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Two marked improvements of algorithms for the magnetohydrodynamic particle code 
which treats elements of the fluid as finite-size particles are reported. First a Lax-Wendroff 
algorithm is introduced in the magnetic field pusher making the code nearly dissipationless. 
Second, a number of improvements to the sharpness of the mode spectra, reduction of noise, 
dispersion, numerical heating of fluid elements, and improved stability have been achieved by 
various choices of the methods for assignment of particle quantities to grid points and inter- 
polation of grid quantities at the particle positions. Properties of the various versions of the 
code have been studied and compared. Applications to the ballooning mode instability, to the 
endloss problem of a high-beta plasma column with sharp boundaries, and to global MHD 
simulations of the magnetosphere are presented. 

I. INTRODUCTION 

A particle method of solving the plasma equations on the level of hydrodynamics 
[ 1, 21 and magnetohydrodynamics (MHD) has been introduced and extensively 
developed in previous work [3]. It treats elements of the fluids as finite-size particles. 
It solves exactly for the orbits of the particles much as is done in conventional 
particle codes; here MHD forces are employed in the place of the conventional 
Lorentz force. The MHD forces result from a certain coarse-graining of time scales 
involved in the plasma physics process: if it is ideal MHD, the simulation “particles” 
represent a fluid ensemble of ions and electrons and become charge neutral, carrying 
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only mass but no charge. It is possible to generalize the codes by adding, for 
example, finite resistivity effects as done in Ref. [4] or the Hall term as done in Ref. 
[5]. Addition of these terms sometimes changes the ordering of the time scales 
involved and may require careful considerations of the algorithm. A fixed background 
grid is introduced upon which the magnetic field is defined and the fluid quantities 
such as velocity and density are accumulated from the particle velocities and 
positions, as is done for the charge density and currents in a conventional particle 
code. The particle quantities are then pushed in a Lagrangian way while the field 
quantities are advanced in an Eulerian manner. Computational burdens are, so to 
speak, split into two different levels: the sub-grid level (particles) and the grid level to 
facilitate the description of MHD activities. Because of its particle nature (the 
Lagrangian part of the code), this algorithm naturally handles convection and exactly 
conserves mass and momentum. In conventional Eulerian codes, on the other hand, 
because of the advective derivatives in the fluid equations, the density could go 
negative, for example, and unphysical instability result unless special cures are 
introduced to supress this as in the flux conservative transport (FCT) 161. The 
introduction of a fixed background grid (the Eulerian part of the code) circumvents 
grid entanglement resulting from complicated fluid motion inherent to conventional 
Lagrangian fluid codes. The use of particles to describe the fluids has some disad- 
vantages: (i) significant increase of memory for particle quantities and of time 
required to handle particle computation, (ii) some noise problem absent in conven- 
tional fluid codes but not as excessive as in the charged particle codes. However, the 
general physical nature of the codes, their simplicity and ability to yield physical 
results with a minimum of ad hoc assumptions and the ease with which they can be 
modified to include additional physical effects make this class of code very useful. In 
this paper we report two substantial improvements to the work [3]. Previously [3], to 
assign fluid quantities onto the mesh from particle quantities and, inversely, to assign 
the force on particles from the mesh quantities, a coarse interpolation, the nearest 
grid point method (NGP), was employed. Although sufficiently large grid and 
numbers of particles can alleviate numerical coarseness, speed and economy require 
an improvement on this. To update the magnetic field, we employed the Lax method 
[ 71 in Ref. [3]. Although the algorithm is simple and stable, it gives rise to numerical 
diffusion of magnetic fields for problems where plasma quantities vary rapidly in 
space. Therefore, improvement is desired here as well. For the first improvement, we 
have tested several grid-particle assignment (interpolation) techniques and compared 
them to each other; here we report on the area weighting method and the subtracted 
dipole (SUD) method [8]. For the second, we have examined several varieties of the 
time-centered Lax-Wendroff method [7] to reduce the numerical diffusion of the 
previous Lax method. Actual implementation of the Lax-Wendroff algorithm couples 
to the particle grid assignment to a certain extent. It is known 191 that the conven- 
tional Eulerian Lax-Wendroff algorithm is nonlinearly unstable (explosive instability) 
to odd-even grid fluctuations even though it is linearly stable. This phenomenon is in 
general controlled by introducing numerical diffusion terms in the equations such as 
the continuity equation and the equation of motion, or by resorting to the FCT 
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method [ 6, 91, where the stabilizing numerical diffusion terms are offset by the so- 
called anti-diffusion terms. In the present MHD particle code, however, the 
Lax-Wendroff algorithm is stable to these types of perturbations with no recourse to 
added numerical diffusive terms being required. 

We discuss the Lax-We&off scheme and its actual implementation with various 
interpolation schemes in Section II. We also make a comparison of the Lax-Wen- 
droff code with the Lax method in this section. A code version which handles all the 
derivatives in Fourier space with the SUD assignment is detailed in Section III, while 
another version of the code which treats derivatives by finite differences, with an area 
weighting assignment is reported in Section IV. Applications of the present codes are 
given in Section V and a discussion presented and conclusions drawn in the final 
section. 

II. LAX-WENDROFF SCHEME 

(A) Algorithm 

In the MHD regime the magnetic induction equation (Faraday’s law) cannot be 
cast, in a straightforward manner, in a time-centered finite difference form. In order 
to make it virtually time centered, the magnetic induction equation 

is pushed using the Lax-Wendroff method [7, lo] as follows; a first approximate step 
is taken 

B ‘+ y2 = (B”) + [V x (v; x B”)] $ (2) 

followed by 
B ‘+I = B” + [V x (v;+** x Bntu2)] At, (3) 

where V~ stands for the fluid velocity and superscripts refer to the time step. The 
angular bracket denotes averaging over the neighboring spatial cells, i.e., 

(B)Q= Pit,,j+Bi-,,j+ Bi,j+~ +Bi,j-1)/4 

at grid (i,j) for a two dimensional case, subscripts representing the mesh points. On 
the other hand, the particle quantities are advanced in time using the following leap- 
frog scheme 

v;+V2=v;-“2+;[-V~+(VxB)xB/4z];dt, (4) 

xl+’ =x; + v;+‘/*At, (5) 
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where p and p are the plasma density and pressure defined on grid points which are 
interpolated at the position of the ith particle. The details of this interpolation are 
discussed in later sections. The derivatives are evaluated either by means of finite 
diferences or by Fourier transformation techniques. The full scheme for the code is 
detailed in Table I. 

The two step Lax-Wendroff method is a nearly dissipationless time-centered 
method, accurate to the second order in kA where A is the mesh size and k is a 
typical wavenumber. The first step (Lax step) of the scheme, Eq. (2), is only used for 
the sake of facilitating the calculation of the magnetic field at centered time on the 
right-hand side of Eq. (3), the second step. By so doing, Eq. (3) now becomes time 

TABLE I 

Lax-Wendroff Scheme for an MHD Particle Code 

Initially we have: B”, x”, v”-‘*. 

(1) Compute fluid density: p” =fct(x”) 
(2) Compute magnetic and fluid forces: 

F; = (V x B”) x B”/~R/J” 

F; = -Vp”/p”, where p =fct@) 

(3) Push velocities half a time step: 

v” = v”-‘I= + F”Atl2, 

where F” = Fi + F;I 

(4) Compute fluid velocities: VT =fct(v”, x”) 

(5) Push B half time step using Lax: 

B” + u2 = (B)” + (V x (v; x B”)) Ar/2, 

where @XL = @f+ ‘,I + W-W + JJf,j+, + B?j-1)/4 

(6) Push velocities half a time step 

v” + “’ = v” + F”At/Z + f-(v; - v”) 

where f is an optional drag term 0 <f < 1 which removes multi-streaming (if f = 1) 

(7) Push positions half a time step: 

x”+ ‘I2 =x” + ,/‘+ wzAtf2 

(8) Compute fluid velocities: v;’ vz =fct(v”+ “I, x”+ v2) 
(9) Push B with a full step: 

B”+’ = B” + V x (v;+“~ x B”+“*))A[ 

(10) Push position half a time step: x”+’ =x”+ y2 + v”+“*At/2 
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centered. For particle pushing, only these time-centered magnetic fields are employed 
in Eq. (4) thus minimizing the diffusion inherent in the Lax step. By doing a signal 
analysis and considering a constant velocity as in Potter [7], one finds a norm for the 
amplification matrix which is given by 

1 gl* = 1 + 4k4A4a a -; , 
( ) 

where a = (uAt/2A)* and N is the number of spatial dimensions. A Von Neumann 
stability criterion is obtained from Eq. (6) as 

for a two dimensional plasma with c being the fastest velocity of the system. 

(B) Interpolation Scheme and Dispersion Relation 

The dispersion relation of the modes is highly dependent on the interpolation 
scheme used, especially for large values of the wavenumber k. In this subsection, 
finite grid size effects in the MHD particle code are studied and dispersion relations 
for the sound and Alfven waves are obtained; these will be compared later on with 
values obtained from numerical experiments. 

The force acting on a particle at x = x, is affected by the force field at the various 
grid points; a weighted sum of these must be taken into account for the fact that the 
particle is not located at a grid point and it has finite size [ 111. For simplicity let us 
assume a functional variation in the x direction only. Then the force acting on the 
particles is expressed [ 121 as 

F(x,) = J dX f(X, - X) 1 W(X - Xi) Fi 7 (8) 
i 

where the subscript a stands for the a th particle, f is the form factor of the particle 
and w is a weighting factor arising from the interpolation to the particle position of a 
grid quantity force whose linearized expression is 

F,=-$vni+ &(VXBi)XB,> 
0 

with the grid quantities n, and Bi being the density and magnetic field perturbation. In 
k-space, Eqs. (8) and (9) become 

F(k) = S(k) - z iwz(k) 
I 

+ k i[K x B(k)] x B, 
0 

and 
S(k) = f(k) w(k)7 

and the term I represents the spatial derivative and is in the x-direction. 

(10) 
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The density perturbation is evaluated by considering the particle orbits described 
by straight lines with small deflections due to the force term. The perturbation of the 
distribution function is given by 

(11) 

with v, being the velocity perturbation due to the force F(k). This system is indeed 
described by a Vlasov equation for one species of particles with a force term given by 
Eq. (9) [ 121. The MHD aspects are, however, retrieved when we consider the 
moments of that equation. If one really wants to represent a system described by 
MHD equations, multi-streaming should be avoided by some means such as a relative 
drag between particles with different velocities in the same cell [2], as shown in Table 
I, Item (6). The density perturbation is then 

(12) 

where 

w(k,w)=-LJ d3v 2.5 
l-kv, h (13) 

w 

and 

k, = k $ 2np, 

with p being an integer. The terms with p # 0 in the summation represent the spatial 
aliases. 

The set of equations is closed by including Eq. (1); they then become 

-ioB = iK x (vf x B,), 

with 

yo(k)=-!-jd3v vkv .$‘. 
l-2 

0 

(14) 

Let us consider a homogeneous magnetic field B, parallel to the x axis and consider 
the sound waves (longitudinal velocity perturbation) and Alfven waves propagating 

581/43/2-6 



214 BRUNEL ET AL. 

along this axis. The dispersion relation obtained for the sound wave is the following 

co2 = S*(k) /c(k) kc; 

while that for the Alfven wave is 

co* = cf, S*(k) x*(k). (16) 

Here we have kept only the fundamental and have neglected all the aliases. The 
thermal speed ur of the “particle” velocity distribution &(u) is assumed much smaller 
than c, and c,. 

(C) Comparison between the Lax and the Lax-WendroflMethod 

The Lax scheme and the Lax-Wendroff scheme are compared on the basis of mode 
spectra from the NGP versions. The dispersion relations of the sound wave and 
Alfven wave have been measured from thermal runs on two-and-one-half dimensional 
(two space and three velocity dimensions) codes. Time auto-correlations of the 
magnetic field and density fluctuations have been taken and frequency spectra derived 
from them. The parameters for the runs are: the Alfven speed c, = 4cS, the grid size 
32 x 32 with four particles per cell. The runs extend to 2000 time steps (t = 200,4/c,). 
The results for both dispersion relations have been plotted in Figs. la, b and 
compared to the theoretical results predicted by Eqs. (15) and (16) (we take k 
parallel to the x-axis). For the sound wave we use gaussian shaped particles, thus 
f(k) = exp(-k2a2/2) with a = d, and we evaluate the pressure gradient using fast 
Fourier transforms, i.e., x(k) = k. For the magnetic term we have no form factor, i.e., 
f = 1, and we use finite differences to evaluate the magnetic pressure gradient so that 
K(k) = k(sin kd/kd). NGP weighting yields w(k) = sin(kd/2)/(kd/2). Equations (15) 
and (16) become respectively 

w* = exp(-k2a2) ( si;;;2’) * k2$ 

and 

(18) 

Fair agreement with the theory (Eq. (18)) is obtained for the Alfven wave with the 
Lax method (Fig. la). It is slightly better with the Lax-Wendroff method (Fig. lb). 
While this is not apparent from Figs. la, b, the frequency spectra are observed to be 
both cleaner in the Lax-Wendroff case than in the Lax one (i.e., the spectral peaks at 
the characteristic frequencies appear prominently, an indication of lower numerical 
noise) and sharper (i.e., their full width at half maximum is narrower, a reflection of 
the nearly dissipationless character of the algorithm.) For the sound wave, the 
correlation points of Figs. la, b lie above the theoretical curve predicted by Eq. (17). 
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FIG. 1. Dispersion relation of Alfven and sound waves for (a) Lax NGP version of this code, (b) 
Lax-Wendroff NGP, (c) Lax-Wendroff Fourier SUD, and (d) Lax-Wendroff area sharing; we used 
k = 2nN/32. 

The reason for this discrepancy is the contribution made by the random thermal 
particle motion as shown by Eq. (15). However, even if we start with a negligible 
thermal velocity vT = 0. lc,, at the end of the run the thermal velocity becomes 
vT = 0.4~2, due to the numerical heating associated with aliases at large k. This 
heating makes the simulation points fall higher than the theoretical prediction for the 
large wavenumbers. Since correlation diagonistics are essentially time averaged ones 
and the heating is time dependent, it is difficult to define a numerical UC to better fit 
Eq. (15) to the simulation frequencies. The numerical noise and heating of the 
“particles” (fluid elements) can be reduced and both Alfven and sound wave 
dispersion relations become closer to theory by adopting more elaborate algorithms 
as described in the following sections. 

III. FOURIER SPACE ALGORITHM WITH THE SUBTRACTED DIPOLE INTERPOLATION 

The Lax-Wendroff scheme was implemented using several different versions in 
order to experimentally determine an optimal choice of algorithm, although in these 
studies we were guided by existing theoretical considerations and experience. The 
different versions tested differ primarily in the way the particle and grid quantities are 
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related: NGP, SUD, area weighting, etc., were used. Another aspect which was varied 
was the method of calculating spatial quantities from grid quantities: Fourier space 
handling using the fast Fourier transform (FFT) and finite differences were used. 
Since conventional particle codes at the University of California at Los Angeles 
employ SUD for calculating the field quantities in Fourier space, one natural 
improvement over the original Lax code with NGP [3] is to apply the same 
algorithm, i.e., the SUD algorithm for calculating the grid quantities in Fourier space 
for the Lax-Wendroff particle MHD code. In this section we describe this approach. 
In the next section we present an alternative approach via finite differences in real 
space with area weighting interpolation. 

All the force terms (the particle pressure and magnetic force) are calculated as 
spatial derivatives of the stress tensors (pressure and Maxwell’s stress tensor) in 
Fourier space. Each particle is assigned a Gaussian-shaped mass distribution with a 
Gaussian form factor interpolated by the SUD method [ 11, 131. The interpolation 
function for SUD in Fourier space is 

2 kA 4 
w(k) = kd sin3 2 + - 

k2A2 
sin2 kd ~0s kd 

2 2 * (19) 

Equation (19) is approximately unity for kA _< 7r/2; hereafter we neglect its deviation 
from unity. The expressions 
obtained from Eqs. (15) and 

I- 
of the dispersion relations for sound and Alfven waves 
(16) are 

co2 = e - k2a2k2c,2 3 (20) 

k2c;. (21) 

Time correlations of the density and magnetic field for the various k modes have been 
taken for runs with the same parameters as in Section II (C). Good agreement is 
observed with Eqs. (20) and (21) for the sound wave and the Alfven wave as shown 
in Fig. Ic. Numerical heating of the particles does not occur now and the thermal 
energy of particles does not increase for a = lA, a great improvement over the NPG 
version. Another improvement, not apparent from Fig. lc, is that the near absence of 
numerical noise and particle heating makes the frequency spectra cleaner and sharper 
at the large k than those from the NGP scheme. 

The dispersion of the waves due to the finite size of particles becomes significant 
for large wavenumbers, i.e., n > 5 with k = 2nn/L and L = 324 (see Fig. lc). These 
modes with significant dispersion, however, heavily damp and do not contribute to 
the transport to a large extent. If a substantially smaller particle size (a s 0.74) is 
used, the code is unstable to numerical heating of the particles. A reasonable 
explanation is that a reduced particle size gives less suppression of the high k modes 
allowing greater effects of aliasing to produce numerical heating of the particles. 
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IV. FINITE DIFFERENCE ALGORITHM WITH THE AREA WEIGHTING INTERPOLATION 

A finite difference algorithm for the Lax-Wendroff scheme using area weighting 
interpolation [l] has been implemented in parallel to the Fourier transform algorithm 
with dipole interpolation (Section III). It can be shown for charged particle codes 
[ 131 that the area weighting scheme is equivalent to the dipole interpolation one and 
that both are accurate to the second order in kA. In addition, implementation of 
complicated boundary conditions is generally easier and extension to a curvilinear 
coordinate system more straightforward for the finite difference scheme. It is, 
therefore, worthwhile to examine the properties of both types of algorithms and 
compare one to other for the case of the MHD particle code. 

The version presented here employs an area weighting algorithm for the 
computation of the density and the fluid velocity from particles as well as for 
assigning the force on the particles. In order to increase the stability and to keep the 
particle heating negligible, a particle size (area weighting distance) of typically 
1 < a < 2 is used. The contribution to the density due to one particle at one grid 
point is proportional to the area of the particle overlapping the grid point; the same 
principle is used to evaluate the share of the force coming from one particular grid 
point to the particle position for pushing the particle. In one dimension, for example, 
the force sharing may be written as 

with 

wi-,=max{(a- 1)/2-dx,O}/a, 

wi = min((a + 1)/2 - ]dx], 1)/a, 

wi+l =max{(a- 1)/2+dx,O}/a, 

(22) 

where the point i is the nearest grid at a distance (-4x) from the particle. Such force 
sharing, Eq. (22), yields a weighting function in Fourier space which is 

w(k) = ( si;aT2) ( si;;;2) . (23) 

It turns out to be necessary in this version to introduce a double staggered mesh 
system in order to keep the grid noise and particle heating as low as in the Fourier 
transform algorithm with dipole interpolation version of the particle MHD code. A 
single grid suffices in charged particle codes to achieve this. In the MHD particle 
code shorter range forces come into play. The short wavelengths or large 
wavenumbers are more emphasized (the pressure force, for instance, goes like kp 
while the electrostatic force goes like p/k in 1D) and a finer treatment of the 
difference operations is required; hence the staggered grid. When we use a single grid 
as in Section III, we observe a substantial increase in the particle random motion 
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(kinetic energy of the particles) larger than that of the Lax and NGP version with a 
Gaussian form factor. Also, the wave spectra for he sound waves are neither clear 
nor sharp. 

A second staggered grid is introduced at the half position and the grid quantities 
from the full position mesh is transferred to the half position mesh when one is 
evaluating the spatial derivatives which, for example in the case with respect to x, is 
expressed as 

aA c-1 ax i+ l/Zjtl/2 
=~('it~,~-Ai~+Aitljtl-Ai~t~). 

The density and fluid velocity can be either accumulated on the full or half position 
mesh. Consider Table I for the Lax-Wendroff scheme. When the single grid system 
takes every operation on a single grid, the double grid system alternates the grid as 
follows. The particle velocity and magnetic field, at the full time step n are still 
defined on the integral position mesh, while the force pushing the particle and the 
intermediary value for the magnetic field are defined on the half position mesh. With 
this double mesh, the sound wave spectrum is much improved and the heating rate is 
reduced at least by a factor of two. 

Time autocorrelations of the density and the magnetic field for different k’s have 
been taken for parameters identical to Section II(C) but with a particle size a = 1.44. 
The dispersion relation has been plotted from the correlation data for the sound and 
Alfven waves (Fig. Id) and compared with the theoretical curves described by 
Eqs. (15) and (16), respectively: 

@2=( Si~~~2)2(si~~~2)3k2e:, (25) 

(26) 

Here we took rc(k) = 2/4 sin kA/2 because of our double grid system. The frequency 
spectra are as clean and as sharp as those obtained for the Fourier Transform 
algorithm with dipole interpolation and the simulation frequencies measured plotted 
in Fig. Id. It shows closer agreement between theory and simulation than Fig. lb 
obtained in II(C) with the NGP version of the code. The Alfven wave dispersion 
relation from the simulation is well described by Eq. (26). Because there is much less 
thermal noise, the sound waves dispersion relation is much closer to the theoretical 
curve than in the case of the NGP run. The particle random motion increases only by 
a small amount here. Starting with a thermal velocity vr = 0. lcs, we have ur. = 0.2~~ 
after 2,000 time steps, which is a small increase in energy when we compare it with 
the average kinetic energy for a particle cfpm. However, the sound wave dispersion 
relation agrees better with theory for the Fourier Transform algorithm with dipole 
interpolation than for the two-grid area-weighting finite difference version. 
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Nevertheless, there is much less dispersion at the large k modes in the latter (Fig. Id) 
than in the former (Fig. lc) for both Alfven and sound waves because of the different 
form factors attached to the particles. 

V. APPLICATIONS 

Some applications of these various versions of the Lax-Wendroff code to physics 
problems are given in this section: (a) the ballooning instability, (b) the problem of 
endflow from a high-beta plasma column, and (c) a global simulation of the 
magnetosphere. The first two problems, which involve a nonuniform plasma with 
large density, pressure and magnetic field variations, are difficult to simulate using 
the Lax scheme. This is because numerical diffusion of the magnetic field through the 
plasma quickly creates a diffuse plasma-field boundary [ 71 thereby creating undesired 
pressure, density, field profiles which alter instability or other dynamic behavior we 
desire to model. For the third problem, although some global hydrodynamical aspects 
of the magnetosphere may be satisfactorily modeled by the Lax algorithm, one 
notable shortcoming in such simulations [ 151 has been a short magnetotail, since the 
high local numerical field diffusivity causes an immediate reconnection of magnetic 
field lines behind the dipole field for a southward configuration of the solar wind 
(directed opposite to the dipole). The implementation of the Lax-Wendroff scheme 
enable us to reduce the numerical diffusion in the magnetic field by a substantial 
amount. Note that the fluid equations are always integrated by the time-centered leap- 
frog scheme and do not cause excessive viscosity in either the Lax or the Lax-Wen- 
droff codes. As we shall see in the following, the Lax-Wendroff scheme can handle 
the cases where the plasma is highly nonuniform. 

(A) Ballooning Instability 

The nonresistive MHD ballooning instability occurs in magnetic systems with 
good and bad magnetic field curvature; roughly speaking it is an interchange 
instability predominantly localized to the bad curvature regions. Its structure is such 
that perturbations vary not only perpendicular to the field lines (kJ but also parallel 
to the field lines, i.e., k,, # 0. We have made preliminary simulations of this instability 
using the simplest model which incorporates its essential features. The model is a slab 
of plasma perpendicular to the y axis. The magnetic field lines lie in the x-z plane 
and are tilted at a slight angle to the z-axis. The effects of good and bad curvature are 
mocked up by imposing a gravitational field of the form g = g&5,/L,) cos 2n,/L, 
sin 2ny/L,~?~ + g, sin 2m/L, cos 277y/LY6,,. This form of gravitational field is chosen 
because it can be derived from a potential and hence the plasma motion is energy 
conserving. The tilt of the field lines in the x-direction means that stable and unstable 
regions are connected along field lines. In the simulation it is assumed that all quan- 
tities are independent of z (2 - 1/2D model). We have also used a model which is 
periodic in the y-direction for simplicity in solving for B; this also accounts for the 
forms chosen for g. 
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FIG. 2. Ballooning instability with the 2-1/2D code. (a) Density contours at t = lOd/c, before the 
onset of the instability; the arrows inside labeled g, indicate the direction of the gravitational force in the 
stable regions as well as in the unstable one. (b) Projection of the magnetic field lines in the x-y plane at 
the same time (f = lOd/c,). (c) Density contours after the onset of the ballooning instability at 
t = 6Od/c,. The magnetic field lines at the same time (t = 6Od/c,). 

Our simulation involved an x-y grid which was 64 x 32. The plasma slab was 
confined between y = 16 and y = 32. It has a sharp boundary with a plasma p of 0.06 
and g, = 0.1. The tilt of the field lines was varied from 13 = 0” to 5”. The results of a 
typical simulation for 0 = 1” are shown in Fig. 2. Figures 2a, c show density contours 
at t = lOd/c, and 6OA/c,; Figs. 2b, d show the projection of magnetic field lines on 
the x-y plane. The direction of g is shown in Fig. 2a. The plasma is unstable on the 
left and stable on the right. The ballooning is clearly visible in Figs. 2c, d. For large 
tilt angles, 19 2 5”, we find the plasma is stable. 

This can be understood from the following physical arguments. When the 
connection length between the good and bad curvature regions, L, = Lx/2 sin 8, is 
short enough that an Alfven wave can travel between them in a time smaller than a 
few e-folding times of the mode, y- ‘, the mode can be stabilized by transmitting 
energy to being tied to the stable region; only the average g which is zero is 
important. This time should be (L,/27rc,) = (L,/47rc, sin 8), where L, is the 
wavelength between good and bad regions. The stability criterion may be written 

Now y s 6 is the growth rate for the flute interchange mode with sharp boundary. 
However, because of the tilt of the field lines there is a stabilizing influence for large 
k, associated with bending the field lines. Marginal stability is achieved when a mode 
with one wavelength in the bad region is just unstable. In our two dimensional case, 
however, the parallel wavelength is tied to the perpendicular wavelength, i.e., AI = 21, 
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sin 8. The stability criterion, Eq. (27), for a mode with the longest parallel 
wavelength 4/2 = L, is therefore expressed as a function of 1, and 8: 

AJ2c, sin 8 2 2~1~2/(2rrg)y2. (28) 

Equation (28) says that for a fixed dl. there is a minimum angle 8, above which the 
system is stable against the ballooning instability. For the present parameters we 
obtain the critical angle from Eq. (28) 19~2: 5”. Thus the stability transition as well as 
the critical angle observed in our simulation fit very well with the simple estimate 
made from Eq. (28). 

Some remarks are due here concerning the limitations of our present model. 
Because of the two dimensional restriction, k,, is related to k, by 13 and the plasma is 
not free to minimize 19 in order to find a more unstable mode. A proper treatment 
really calls for a three dimensional model. 

In the unstable cases in our simulation, all the basic features of the ballooning 
modes (except for the 1, dependence of the stability due to the two dimensionality of 
the model) have been observed. First, the projection of the magnetic field lines in the 
x-y plane as shown in Fig. 2d follows closely the contours of equal density (Fig. 2c) 
as it must be for the case when there is no resistivity (nonresistive ballooning.) 
Second, in terms of ordering of the spatial derivatives of density and magnetic fields, 
we notice, as mentioned by Glasser [ 171, that the perpendicular wavelength along x 
is much shorter than the parallel one, since k,ik,= tan 19 Q 1; also we have a/@ < ik, 
as can be seen by the shearing aspect of the field lines in Fig. 2d, which means that 
the bending and compressing terms in the energy principle [ 171, are minimized as 
they should be. 

With the 3D version of the code, ballooning instabilities have been obtained. We 
use the same model as in 2D for the x-y cut but the external magnetic field remains 
purely in the z-direction. The gravitational field is still pointed in the y-direction, but 
is in the unfavorable direction in the region where the coordinate z is small, while in 
the large z region it becomes favorable. The z-direction has been stretched for the 
present run such that the unit grid length in the z-direction dz = 1OOdx = 1OOdy in 
order to allow a mode structure with k,Jk, -% 1. With a system of 16 x 16 x 16 grids 
we see ballooning instability in the unfavorable region (see Fig. 3) albeit its small 
scale, since the condition for instability L,/cA 2 27r/y is very well satisfied. It seems, 
thus, that the present code is able to reasonably describe the ballooning instability. 

(B) Column Outflow 

A plasma column is confined by a magnetic field parallel to the column (the 8- 
pinch or long solenoid configuration) in the normal direction to the field lines, while 
the plasma freely moves along the field lines and escapes at the open ends. We wish 
to understand the influence of finite p on the confinement (generation of a self mirror) 
and the outflow of a high beta plasma column with sharp boundaries; an isotropic 
pressure is used. The outflow is modeled by removing the particles that touch the end 
of the column. The field boundary condition is periodic. The code naturally handles 
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FIG. 3. Ballooning instability in 3D; (a) density contours in the unstable region before the onset of 
the instability at t = 4OA/c,, (b) density contours in the same region after the onset of the instability at 
I = 6OA/c,, (c) density contours in the stable region at the same time, i.e., t = 6OA/c,. 

the sharp density gradient due to its particle nature and the low resistive diffusion of 
the Lax-Wendroff scheme. A drag term u defined as in Ref. [l] is used to suppress 
multistreaming (V = 1). With a system size 1284 X 644 we start with a high density 
column of 20 particles per cell with a diameter of 164, the region outside the column 
is filled with a low density plasma of four particles per cell to keep the Alfven 
velocity finite [ 181. A strong magnetic field in the x-direction is applied outside a 
weaker one inside the column so that perpendicular pressure balance is satisfied. 

In the previous theories for a sharp boundary plasma, an infinite confinement time 
is predicted at j3 = 1 [ 191, since an infinitely large self mirror is produced (here /I is 
the ratio of the plasma pressure in the column to the magnetic pressure outside.) This 
theory gives an outflow proportional to the velocity of an area wave propagating 
along the column which it calculates to be 

for y = 2. (29) 
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FIG. 4. Plasma column endloss; (a) density contours at t = 2OA/c,, where one can see a rarefraction 
wave propagating toward the center, (b) the contours of B, intensity show that the throat does not close 

on the density contours due to curvature tension. 

particles which leave the system at the edges are reintroduced as fresh particles in the 

first x-cell with their original flow velocity and random position along the y-axis. In 
this way, t incoming flow is relatively independent of the presence of the obstacle; 

however some magnetic disturbance is introduced into the solar wind. 
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The Lax scheme used to update the magnetic field through the finite difference 
induction equation introduces a numerical resisitivity which is given by [25] 

q = (A2/2NAt - Atc*/2). (31) 

The quantities A, N, At, and c are respectively the unit grid spacing, the dimen- 
sionality (here N = 2), the time step and some characteristic maximum signal speed 
on the mesh. The first term comes from the lack of time centering and the second 
from the spatial averaging of the field over neighboring grid points as required by 
stability. For the problem investigated with the Lax scheme, the time step is chosen 
such that At < l/flc and the first term in Eq. (31) dominates. The magnetic 
Reynolds number R, = Iv/q is then written as R, N Zu(2NAt)/A*. For the example in 
point, v = vr, At = 0.1, A = 1 and N = 2, so that R, - 0.81, where 1 is taken as the 
characteristic length of variation of the dipole field and is such that 5A 5 15 lOA, 
which means that R, N 4-8. 

The magnetic field topology obtained with the Lax scheme is displayed in Fig. 5a). 
Contours of the z-component of the vector potential depict the field lines at time 
t = 5~; ‘A. The classic Dungey pattern of the reconnected magnetosphere is obtained 
with x-points at the nose and tail where southward solar wind field and dipole field 
merge. This happens close to the vacuum superposition points and there is about the 
same distance between nose and tail x-points and the dipole center. This is because of 
our low magnetic Reynolds number and diffusion dominates over convection. 

A run on the Lax-Wendroff code is unstable without explicitly imposed 
(“physical”) resistivity, because there is no dissipation to allow the fluid to shock and 
no possibility for the solar wind field to reconnect. We note a pile-up of the flows in 
front of the dipole and numerical instability results. Addition of some resistivity 
stabilizes the code. Following Ref. [7], we introduce finite resistivity in the second 
step of the Lax-Wendroff algorithm by a four point angled derivative and the field 
pushing equation in finite difference form becomes 

B ‘+’ = B” + At[A x (v x B)]“+ y2 

+$V[Bit,,j+l +Bi-l,j-l +Bi+l,j+l 

+ Bi- I,j- 1 - 4Bi,jln, (32) 

where the superscript n refers to the time step, i.e., t = ndt, and the subscripts i and j 
indicate the grid points in the x- and y-directions. This algorithm performs well for 
constant q and requires that At < AZ/q. 

For large values of q and the same parameters, we recover the Lax results of 
Fig. 5a). For n = 0.5, a Reynolds number R, - 41 or R, - 2040 is obtained. The 
magnetic field lines for this case are presented in Fig. 5b) at time t = 5~;’ A. 
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(b) 

FIG. 5. Magnetic field lines for the magnetosphere computed with (a) Lax scheme and (b) 
Lax-Wendroff scheme; a much longer tail is seen due to the lesser magnetic diffusion. 

Convection dominates over diffusion and the tail is now stretched out substantially, a 
feature believed to be naturally occurring. Reconnection at the nose also takes place, 
but is somewhat obscured by the reentry of the now longer tail magnetic field in front 
of the dipole. 
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VI. SUMMARY AND CONCLUSIONS 

Marked improvements in the MHD particle code [ 1 ] have been achieved on two 
fronts: one by improving the particle quantity assignments to grid points and grid 
quantity assignments to particles and the other by implementing the Lax-Wendroff 
algorithm for magnetic field advancement. For the first of these, various versions of 
assignment have been tried and compared. The most successful among them are the 
subtracted dipole interpolation assignment in the code where differentiation 
operations are handled in Fourier space and the area weighting assignment using a 
two grid system in a code where finite differencing is employed. These two versions 
have some pluses and minuses on different aspects of code qualities when compared 
with each other; both of these, when compared with the nearest grid point 
assignment, show much improved properties. For the second aspect, implementation 
of the Lax-Wendroff algorithm virtually eliminates numerical resistivity from the 
code. In contrast to its implementation in the Eulerian code, where numerical 
diffusion terms are required for numerical stability, the straightforward implemen- 
tation (Table I) of this algorithm for the magnetic induction equation suffices without 
any artitical terms. 

The properties of the present code and its versatility as well as its resilience have 
been demonstrated in extensive standard tests of wave propagation using temporal 
autocorrelation functions and in a number of other physical applications. In these 
applications the present code has yielded reasonable physics results where the earliest 
version of the code was unable to do so. Examples in point are investigations of the 
ballooning instability, investigations of the high-beta column outflow problem and the 
elimination of highly resistive results in the magnetosphere flow problem. 
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